Let  $f(x)$  satisfy the requirement of lagranges mean value theorem in $[0,2]$ . If $f(x)=0$ ; $\left| {f'\left( x \right)} \right| \leqslant \frac{1}{2}$ for all $x \in \left[ {0,2} \right]$, then-

  • A

    $f\left( x \right) \geqslant 2$

  • B

    $\left| {f\left( x \right)} \right| \leqslant 1$

  • C

    $f\left( x \right) = 2x$

  • D

    $f(x) = 3$ for at least one $x$ in $[0,2]$

Similar Questions

Rolle's theorem is not applicable to the function $f(x) = |x|$ defined on $ [-1, 1] $ because

If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$  . .

  • [JEE MAIN 2014]

Number of solution of the equation $ 3tanx + x^3 = 2 $  in $ \left( {0,\frac{\pi }{4}} \right)$ is

If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............

The function $f(x) = {(x - 3)^2}$ satisfies all the conditions of mean value theorem in $[3, 4].$ A point on $y = {(x - 3)^2}$, where the tangent is parallel to the chord joining $ (3, 0)$  and $(4, 1)$  is