Let $f(x)$ satisfy the requirement of lagranges mean value theorem in $[0,2]$ . If $f(x)=0$ ; $\left| {f'\left( x \right)} \right| \leqslant \frac{1}{2}$ for all $x \in \left[ {0,2} \right]$, then-
$f\left( x \right) \geqslant 2$
$\left| {f\left( x \right)} \right| \leqslant 1$
$f\left( x \right) = 2x$
$f(x) = 3$ for at least one $x$ in $[0,2]$
Rolle's theorem is not applicable to the function $f(x) = |x|$ defined on $ [-1, 1] $ because
If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$ . .
Number of solution of the equation $ 3tanx + x^3 = 2 $ in $ \left( {0,\frac{\pi }{4}} \right)$ is
If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............
The function $f(x) = {(x - 3)^2}$ satisfies all the conditions of mean value theorem in $[3, 4].$ A point on $y = {(x - 3)^2}$, where the tangent is parallel to the chord joining $ (3, 0)$ and $(4, 1)$ is